A Surveillance System Ensures Crossover Formation in C. elegans
نویسندگان
چکیده
Crossover (CO) recombination creates a physical connection between homologs that promotes their proper segregation at meiosis I (MI). Failure to realize an obligate CO causes homologs to attach independently to the MI spindle and separate randomly, leading to nondisjunction. However, mechanisms that determine whether homolog pairs have received crossovers remain mysterious. Here we describe a surveillance system in C. elegans that monitors recombination intermediates and couples their formation to meiotic progression. Recombination intermediates are required to activate the system, which then delays further processing if crossover precursors are lacking on even one chromosome. The synaptonemal complex, a specialized, proteinaceous structure connecting homologous chromosomes, is stabilized in cis on chromosomes that receive a crossover and is destabilized on those lacking crossovers, a process that is dependent on the function of the polo-like kinase PLK-2. These results reveal a new layer of communication between crossover-committed intermediates and the synaptonemal complex that functions as a cis-acting, obligate, crossover-counting mechanism.
منابع مشابه
An elegans Solution for Crossover Formation
The MUS-81, SLX-1, and XPF-1 structureselective endonucleases have been implicated in meiotic crossover (CO) formation in a variety of organisms, but their contributions to C. elegans CO formation have been unclear. In this issue of PLOS Genetics, Agostinho et al., Saito et al., and O’Neil et al. demonstrate that MUS-81 and XPF-1 function in two parallel pathways during the formation of meiotic...
متن کاملPolo-like kinase-dependent phosphorylation of the synaptonemal complex protein SYP-4 regulates double-strand break formation through a negative feedback loop.
The synaptonemal complex (SC) is an ultrastructurally conserved proteinaceous structure that holds homologous chromosomes together and is required for the stabilization of pairing interactions and the completion of crossover (CO) formation between homologs during meiosis I. Here, we identify a novel role for a central region component of the SC, SYP-4, in negatively regulating formation of reco...
متن کاملInterplay between Structure-Specific Endonucleases for Crossover Control during Caenorhabditis elegans Meiosis
The number and distribution of crossover events are tightly regulated at prophase of meiosis I. The resolution of Holliday junctions by structure-specific endonucleases, including MUS-81, SLX-1, XPF-1 and GEN-1, is one of the main mechanisms proposed for crossover formation. However, how these nucleases coordinately resolve Holliday junctions is still unclear. Here we identify both the function...
متن کاملIdentification of DSB-1, a Protein Required for Initiation of Meiotic Recombination in Caenorhabditis elegans, Illuminates a Crossover Assurance Checkpoint
Meiotic recombination, an essential aspect of sexual reproduction, is initiated by programmed DNA double-strand breaks (DSBs). DSBs are catalyzed by the widely-conserved Spo11 enzyme; however, the activity of Spo11 is regulated by additional factors that are poorly conserved through evolution. To expand our understanding of meiotic regulation, we have characterized a novel gene, dsb-1, that is ...
متن کاملThe C. elegans DSB-2 Protein Reveals a Regulatory Network that Controls Competence for Meiotic DSB Formation and Promotes Crossover Assurance
For most organisms, chromosome segregation during meiosis relies on deliberate induction of DNA double-strand breaks (DSBs) and repair of a subset of these DSBs as inter-homolog crossovers (COs). However, timing and levels of DSB formation must be tightly controlled to avoid jeopardizing genome integrity. Here we identify the DSB-2 protein, which is required for efficient DSB formation during C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 26 شماره
صفحات -
تاریخ انتشار 2016